Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Front Cell Infect Microbiol ; 13: 1181402, 2023.
Article in English | MEDLINE | ID: covidwho-20237417

ABSTRACT

Background: Mycoplasma pneumoniae (MP) is a commonly occurring pathogen causing community-acquired pneumonia (CAP) in children. The global prevalence of macrolide-resistant MP (MRMP) infection, especially in Asian regions, is increasing rapidly. However, the prevalence of MRMP and its clinical significance during the COVID-19 pandemic is not clear. Methods: This study enrolled children with molecularly confirmed macrolide-susceptible MP (MSMP) and MRMP CAP from Beijing Children's Hospital Baoding Hospital, Capital Medical University between August 2021 and July 2022. The clinical characteristics, laboratory findings, chest imaging presentations, and strain genotypes were compared between patients with MSMP and MRMP CAP. Results: A total of 520 hospitalized children with MP-CAP were enrolled in the study, with a macrolide resistance rate of 92.7%. Patients with MRMP infection exhibited more severe clinical manifestations (such as dyspnea and pleural effusion) and had a longer hospital stay than the MSMP group. Furthermore, abnormal blood test results (including increased LDH and D-dimer) were more common in the MRMP group (P<0.05). Multilocus variable-number tandem-repeat analysis (MLVA) was performed on 304 samples based on four loci (Mpn13-16), and M3562 and M4572 were the major types, accounting for 74.0% and 16.8% of the strains, respectively. The macrolide resistance rate of M3562 strains was up to 95.1%. Conclusion: The prevalence of MRMP strains in hospitalized CAP patients was extremely high in the Baoding area, and patients infected with MRMP strains exhibited more severe clinical features and increased LDH and D-dimer. M3562 was the predominant resistant clone.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Child , Humans , Pneumonia, Mycoplasma/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Clinical Relevance , Pandemics , COVID-19/epidemiology , Drug Resistance, Bacterial/genetics , Mycoplasma pneumoniae/genetics , Community-Acquired Infections/epidemiology
2.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2320842

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Subject(s)
Community-Acquired Infections , Legionella pneumophila , Pneumonia, Bacterial , Pneumonia , Humans , Adult , Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Prospective Studies , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/etiology , Streptococcus pneumoniae , Mycoplasma pneumoniae , Respiratory Syncytial Viruses , Klebsiella pneumoniae , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/etiology
4.
BMC Pulm Med ; 23(1): 146, 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2300693

ABSTRACT

BACKGROUND: Although cases of respiratory bacterial infections associated with coronavirus disease 2019 (COVID-19) have often been reported, their impact on the clinical course remains unclear. Herein, we evaluated and analyzed the complication rates of bacterial infections, causative organisms, patient backgrounds, and clinical outcome in Japanese patients with COVID-19. METHODS: We performed a retrospective cohort study that included inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021) and obtained demographic, epidemiological, and microbiological results and the clinical course and analyzed the cases of COVID-19 complicated by respiratory bacterial infections. RESULTS: Of the 1,863 patients with COVID-19 included in the analysis, 140 (7.5%) had respiratory bacterial infections. Community-acquired co-infection at COVID-19 diagnosis was uncommon (55/1,863, 3.0%) and was mainly caused by Staphylococcus aureus, Klebsiella pneumoniae and Streptococcus pneumoniae. Hospital-acquired bacterial secondary infections, mostly caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were diagnosed in 86 patients (4.6%). Severity-associated comorbidities were frequently observed in hospital-acquired secondary infection cases, including hypertension, diabetes, and chronic kidney disease. The study results suggest that the neutrophil-lymphocyte ratio (> 5.28) may be useful in diagnosing complications of respiratory bacterial infections. COVID-19 patients with community-acquired or hospital-acquired secondary infections had significantly increased mortality. CONCLUSIONS: Respiratory bacterial co-infections and secondary infections are uncommon in patients with COVID-19 but may worsen outcomes. Assessment of bacterial complications is important in hospitalized patients with COVID-19, and the study findings are meaningful for the appropriate use of antimicrobial agents and management strategies.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Community-Acquired Infections , Cross Infection , Respiratory Tract Infections , Staphylococcal Infections , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Coinfection/epidemiology , COVID-19 Testing , East Asian People , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Respiratory Tract Infections/epidemiology , Community-Acquired Infections/epidemiology , Disease Progression
5.
Semin Respir Crit Care Med ; 44(1): 8-20, 2023 02.
Article in English | MEDLINE | ID: covidwho-2260012

ABSTRACT

Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality, one of the most common reasons for infection-related death worldwide. Causes of CAP include numerous viral, bacterial, and fungal pathogens, though frequently no specific organism is found. Beginning in 2019, the COVID-19 pandemic has caused incredible morbidity and mortality. COVID-19 has many features typical of CAP such as fever, respiratory distress, and cough, and can be difficult to distinguish from other types of CAP. Here, we highlight unique clinical features of COVID-19 pneumonia such as olfactory and gustatory dysfunction, lymphopenia, and distinct imaging appearance.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Bacterial , Humans , COVID-19/complications , Pneumonia, Bacterial/epidemiology , Pandemics , Community-Acquired Infections/epidemiology
7.
JAMA Netw Open ; 6(2): e2255599, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2244315

ABSTRACT

Importance: With the ongoing COVID-19 pandemic, it is crucial to assess the current burden of disease of community-acquired SARS-CoV-2 Omicron variant in hospitalized patients to tailor appropriate public health policies. Comparisons with better-known seasonal influenza infections may facilitate such decisions. Objective: To compare the in-hospital outcomes of patients hospitalized with the SARS-CoV-2 Omicron variant with patients with influenza. Design, Setting, and Participants: This cohort study was based on a national COVID-19 and influenza registry. Hospitalized patients aged 18 years and older with community-acquired SARS-CoV-2 Omicron variant infection who were admitted between January 15 and March 15, 2022 (when B.1.1.529 Omicron predominance was >95%), and hospitalized patients with influenza A or B infection from January 1, 2018, to March 15, 2022, where included. Patients without a study outcome by August 30, 2022, were censored. The study was conducted at 15 hospitals in Switzerland. Exposures: Community-acquired SARS-CoV-2 Omicron variant vs community-acquired seasonal influenza A or B. Main Outcomes and Measures: Primary and secondary outcomes were defined as in-hospital mortality and admission to the intensive care unit (ICU) for patients with the SARS-CoV-2 Omicron variant or influenza. Cox regression (cause-specific and Fine-Gray subdistribution hazard models) was used to account for time-dependency and competing events, with inverse probability weighting to adjust for confounders with right-censoring at day 30. Results: Of 5212 patients included from 15 hospitals, 3066 (58.8%) had SARS-CoV-2 Omicron variant infection in 14 centers and 2146 patients (41.2%) had influenza A or B in 14 centers. Of patients with the SARS-CoV-2 Omicron variant, 1485 (48.4%) were female, while 1113 patients with influenza (51.9%) were female (P = .02). Patients with the SARS-CoV-2 Omicron variant were younger (median [IQR] age, 71 [53-82] years) than those with influenza (median [IQR] age, 74 [59-83] years; P < .001). Overall, 214 patients with the SARS-CoV-2 Omicron variant (7.0%) died during hospitalization vs 95 patients with influenza (4.4%; P < .001). The final adjusted subdistribution hazard ratio (sdHR) for in-hospital death for SARS-CoV-2 Omicron variant vs influenza was 1.54 (95% CI, 1.18-2.01; P = .002). Overall, 250 patients with the SARS-CoV-2 Omicron variant (8.6%) vs 169 patients with influenza (8.3%) were admitted to the ICU (P = .79). After adjustment, the SARS-CoV-2 Omicron variant was not significantly associated with increased ICU admission vs influenza (sdHR, 1.08; 95% CI, 0.88-1.32; P = .50). Conclusions and Relevance: The data from this prospective, multicenter cohort study suggest a significantly increased risk of in-hospital mortality for patients with the SARS-CoV-2 Omicron variant vs those with influenza, while ICU admission rates were similar.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Humans , Female , Aged , Male , Cohort Studies , Hospital Mortality , Influenza, Human/epidemiology , Pandemics , Prospective Studies , SARS-CoV-2 , Switzerland/epidemiology , COVID-19/epidemiology , Hospitals , Community-Acquired Infections/epidemiology
8.
J Trop Pediatr ; 69(1)2022 12 05.
Article in English | MEDLINE | ID: covidwho-2228852

ABSTRACT

OBJECTIVE: This study aimed to observe the impact of the coronavirus disease 2019 (COVID-19) pandemic on the incidence of non-COVID-19 community-acquired pneumonia (CAP) in Shenzhen of China, offering new ideas for evaluating the effects of non-pharmaceutical interventions. METHODS: A retrospective analysis was conducted of inpatients with pneumonia from 2017 to 2021. Epidemiological characteristics of CAP and effects from the COVID-19 pandemic were analyzed by the basic characteristics, time distribution, etiology and disease burden. RESULTS: There were a total of 5746 CAP inpatient cases included from 2017 to 2021. The number of CAP hospitalizations decreased during the pandemic from 2020 to 2021, with seasonal variations of being higher in spring and winter and lower in summer and autumn, whereas it was prevalent throughout the year prior to the pandemic. The children group decreased significantly during the pandemic, with a 15% decrease in the share of CAP inpatients. The detection rates of bacteria and mycoplasma decreased in CAP patients, while the detection rate of the virus increased, and the number of moderate and severe cases reduced more than that of the mild. CONCLUSION: Non-pharmaceutical interventions from COVID-19 have led to a decrease in the number of CAP inpatients, especially for children, with a specific seasonal prevalence in spring and winter, when the prevention interventions should be strengthened further for adults during the pandemic.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Child , Adult , Humans , COVID-19/epidemiology , Pandemics , Retrospective Studies , Pneumonia/epidemiology , Pneumonia/microbiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology , China/epidemiology
9.
Infect Control Hosp Epidemiol ; 42(7): 817-825, 2021 07.
Article in English | MEDLINE | ID: covidwho-1516479

ABSTRACT

OBJECTIVE: Viruses are more common than bacteria in patients hospitalized with community-acquired pneumonia. Little is known, however, about the frequency of respiratory viral testing and its associations with antimicrobial utilization. DESIGN: Retrospective cohort study. SETTING: The study included 179 US hospitals. PATIENTS: Adults admitted with pneumonia between July 2010 and June 2015. METHODS: We assessed the frequency of respiratory virus testing and compared antimicrobial utilization, mortality, length of stay, and costs between tested versus untested patients, and between virus-positive versus virus-negative patients. RESULTS: Among 166,273 patients with pneumonia on admission, 40,787 patients (24.5%) were tested for respiratory viruses, 94.8% were tested for influenza, and 20.7% were tested for other viruses. Viral assays were positive in 5,133 of 40,787 tested patients (12.6%), typically for influenza and rhinovirus. Tested patients were younger and had fewer comorbidities than untested patients, but patients with positive viral assays were older and had more comorbidities than those with negative assays. Blood cultures were positive for bacterial pathogens in 2.7% of patients with positive viral assays versus 5.3% of patients with negative viral tests (P < .001). Antibacterial courses were shorter for virus-positive versus -negative patients overall (mean 5.5 vs 6.4 days; P < .001) but varied by bacterial testing: 8.1 versus 8.0 days (P = .60) if bacterial tests were positive; 5.3 versus 6.1 days (P < .001) if bacterial tests were negative; and 3.3 versus 5.2 days (P < .001) if bacterial tests were not obtained (interaction P < .001). CONCLUSIONS: A minority of patients hospitalized with pneumonia were tested for respiratory viruses; only a fraction of potential viral pathogens were assayed; and patients with positive viral tests often received long antibacterial courses.


Subject(s)
Anti-Infective Agents , Community-Acquired Infections , Pneumonia, Viral , Viruses , Adult , Anti-Bacterial Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/epidemiology , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Retrospective Studies
11.
BMJ Open Respir Res ; 9(1)2022 12.
Article in English | MEDLINE | ID: covidwho-2193838

ABSTRACT

INTRODUCTION: Socioeconomic deprivation has been associated with an increased incidence of infection and poorer clinical outcomes during influenza pandemics and the COVID-19 pandemic. The aim of this study was to determine the relationship between deprivation and adverse clinical outcomes following hospital admission with community-acquired pneumonia (CAP), specifically 30-day all-cause mortality and non-elective hospital readmission. METHODS: Data from the British Thoracic Society national CAP audit on patients admitted to hospital with CAP in England between 1 December 2018 and 31 January 2019 were linked to patient-level Hospital Episode Statistics data and Index of Multiple Deprivation (IMD) scores. Multivariable logistic regression models were used to examine the association between deprivation and (a) 30-day mortality and (b) 30-day readmission with p values for trend reported. Age was examined as a potential effect modifier on the effect of IMD quintile on mortality and subsequent subanalysis in those <65 and ≥65 years was performed. RESULTS: Of 9165 adults admitted with CAP, 24.7% (n=2263) were in the most deprived quintile. No significant trend between deprivation and mortality was observed (p trend=0.38); however, the association between deprivation and mortality differed by age group. In adults aged<65 years, 30-day mortality was highest in the most deprived and lowest in the least deprived quintiles (4.4% vs 2.5%, aOR 1.83, 95% CI 0.84 to 4.0) with a significant trend across groups (p trend=0.04). Thirty-day readmission was highest in the most deprived quintile (17.1%) with a significant p trend across groups (p trend 0.003). Age-adjusted odds of readmission were highest in the most deprived compared with the least deprived (aOR 1.41, 95% CI 1.16 to 1.73). CONCLUSIONS: In adults aged<65 years hospitalised with CAP in England, mortality varied inversely with indices of social deprivation. There was also a significant association between deprivation and 30-day readmission. Strategies are required to decrease health inequalities in pneumonia mortality and hospital readmissions associated with deprivation.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Humans , Adult , Retrospective Studies , Pandemics , Socioeconomic Factors , COVID-19/epidemiology , England/epidemiology , Social Deprivation , Pneumonia/epidemiology , Community-Acquired Infections/epidemiology
12.
PLoS One ; 17(11): e0277201, 2022.
Article in English | MEDLINE | ID: covidwho-2197029

ABSTRACT

OBJECTIVES: Respiratory tract infection (RTI) incidence varies between people, but little is known about why. The aim of this study is therefore to identify risk factors for acquiring RTIs. METHODS: We conducted a secondary analysis of 16,908 participants in the PRIMIT study, a pre-pandemic randomised trial showing handwashing reduced incidence of RTIs in the community. Data was analysed using multivariable logistic regression analyses of self-reported RTI acquisition. RESULTS: After controlling for handwashing, RTI in the previous year (1 to 2 RTIs: adjusted OR 1.96, 95% CI 1.79 to 2.13, p<0.001; 3 to 5 RTIs: aOR 3.89, 95% CI 3.49 to 4.33, p<0.001; ≥6 RTIs: OR 5.52, 95% CI 4.37 to 6.97, p<0.001); skin conditions that prevent handwashing (aOR 1.39, 95% CI 1.24 to 1.55, p<0.001); children under 16 years in the household (aOR 1.27, 95% CI 1.12, 1.43, p<0.001); chronic lung condition (aOR 1.16, 95% CI 1.02 to 1.32, p = 0.026); female sex (aOR 1.10, 95% CI 1.03 to 1.18, p = 0.005), and post-secondary education (aOR 1.09, 95% CI 1.02 to 1.17, p = 0.01) increased the likelihood of RTI. Those over the age of 65 years were less likely to develop an infection (aOR 0.89, 95% CI 0.82 to 0.97, p = 0.009). Household crowding and influenza vaccination do not influence RTI acquisition. A post-hoc exploratory analysis found no evidence these subgroups differentially benefited from handwashing. CONCLUSIONS: Previous RTIs, chronic lung conditions, skin conditions that prevent handwashing, and the presence of household children predispose to RTI acquisition. Further research is needed to understand how host and microbial factors explain the relationship between previous and future RTIs.


Subject(s)
Community-Acquired Infections , Respiratory Tract Infections , Aged , Child , Female , Humans , Community-Acquired Infections/epidemiology , Community-Acquired Infections/prevention & control , Crowding , Family Characteristics , Respiratory System , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Risk Factors
13.
BMC Pediatr ; 22(1): 452, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1965734

ABSTRACT

BACKGROUND: Pneumonia is a serious problem that threatens the health of newborns. This study aimed to investigate the clinical characteristics of hospitalized term and preterm infants with community-acquired viral pneumonia. METHODS: This was a retrospective analysis of cases of community-acquired viral pneumonia in the Neonatal Department. Nasopharyngeal aspirate (NPA) samples were collected for pathogen detection, and clinical data were collected. We analysed pathogenic species and clinical characteristics among these infants. RESULTS: RSV is the main virus in term infants, and parainfluenza virus (PIV) 3 is the main virus in preterm infants. Patients infected with PIV3 were more susceptible to coinfection with bacteria than those with respiratory syncytial virus (RSV) infection (p < 0.05). Preterm infants infected with PIV3 were more likely to be coinfected with bacteria than term infants (p < 0.05), mainly gram-negative bacteria (especially Klebsiella pneumonia). Term infants with bacterial infection were more prone to fever, cyanosis, moist rales, three concave signs, elevated C-reactive protein (CRP) levels, respiratory failure and the need for higher level of oxygen support and mechanical ventilation than those with simple viral infection (p < 0.05). The incidence of hyponatremia in neonatal community-acquired pneumonia (CAP) was high. CONCLUSIONS: RSV and PIV3 were the leading causes of neonatal viral CAP. PIV3 infection is the main cause of viral CAP in preterm infants, and these individuals are more likely to be coinfected with bacteria than term infants, mainly gram-negative bacteria. Term infants with CAP coinfected with bacteria were more likely to have greater disease severity than those with single viral infections.


Subject(s)
Community-Acquired Infections , Pneumonia, Viral , Respiratory Syncytial Virus Infections , Virus Diseases , Community-Acquired Infections/epidemiology , Humans , Infant , Infant, Newborn , Infant, Premature , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Retrospective Studies
14.
JMIR Public Health Surveill ; 7(4): e24292, 2021 04 07.
Article in English | MEDLINE | ID: covidwho-2141292

ABSTRACT

BACKGROUND: Significant uncertainty has existed about the safety of reopening college and university campuses before the COVID-19 pandemic is better controlled. Moreover, little is known about the effects that on-campus students may have on local higher-risk communities. OBJECTIVE: We aimed to estimate the range of potential community and campus COVID-19 exposures, infections, and mortality under various university reopening plans and uncertainties. METHODS: We developed campus-only, community-only, and campus × community epidemic differential equations and agent-based models, with inputs estimated via published and grey literature, expert opinion, and parameter search algorithms. Campus opening plans (spanning fully open, hybrid, and fully virtual approaches) were identified from websites and publications. Additional student and community exposures, infections, and mortality over 16-week semesters were estimated under each scenario, with 10% trimmed medians, standard deviations, and probability intervals computed to omit extreme outliers. Sensitivity analyses were conducted to inform potential effective interventions. RESULTS: Predicted 16-week campus and additional community exposures, infections, and mortality for the base case with no precautions (or negligible compliance) varied significantly from their medians (4- to 10-fold). Over 5% of on-campus students were infected after a mean of 76 (SD 17) days, with the greatest increase (first inflection point) occurring on average on day 84 (SD 10.2 days) of the semester and with total additional community exposures, infections, and mortality ranging from 1-187, 13-820, and 1-21 per 10,000 residents, respectively. Reopening precautions reduced infections by 24%-26% and mortality by 36%-50% in both populations. Beyond campus and community reproductive numbers, sensitivity analysis indicated no dominant factors that interventions could primarily target to reduce the magnitude and variability in outcomes, suggesting the importance of comprehensive public health measures and surveillance. CONCLUSIONS: Community and campus COVID-19 exposures, infections, and mortality resulting from reopening campuses are highly unpredictable regardless of precautions. Public health implications include the need for effective surveillance and flexible campus operations.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Universities/organization & administration , COVID-19/mortality , Community-Acquired Infections/epidemiology , Humans , Models, Theoretical , Risk Assessment , Uncertainty , United States/epidemiology
15.
Semin Respir Crit Care Med ; 43(6): 924-935, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2133782

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic upended our approach to imaging community-acquired pneumonia, and this will alter our diagnostic algorithms for years to come. In light of these changes, it is worthwhile to consider several postpandemic scenarios of community-acquired pneumonia: (1) patient with pneumonia and recent positive COVID-19 testing; (2) patient with air space opacities and history of prior COVID-19 pneumonia (weeks earlier); (3) multifocal pneumonia with negative or unknown COVID-19 status; and (4) lobar or sublobar pneumonia with negative or unknown COVID-19 status. In the setting of positive COVID-19 testing and typical radiologic findings, the diagnosis of COVID-19 pneumonia is generally secure. The diagnosis prompts vigilance for thromboembolic disease acutely and, in severely ill patients, for invasive fungal disease. Persistent or recurrent air space opacities following COVID-19 infection may more often represent organizing pneumonia than secondary infection. When COVID-19 status is unknown or negative, widespread airway-centric disease suggests infection with mycoplasma, Haemophilus influenzae, or several respiratory viruses. Necrotizing pneumonia favors infection with pneumococcus, Staphylococcus, Klebsiella, and anaerobes. Lobar or sublobar pneumonia will continue to suggest the diagnosis of pneumococcus or consideration of other pathogens in the setting of local outbreaks. A positive COVID-19 test accompanied by these imaging patterns may suggest coinfection with one of the above pathogens, or when the prevalence of COVID-19 is very low, a false positive COVID-19 test. Clinicians may still proceed with testing for COVID-19 when radiologic patterns are atypical for COVID-19, dependent on the patient's exposure history and the local epidemiology of the virus.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Pneumonia , Humans , COVID-19/epidemiology , COVID-19 Testing , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Pneumonia/diagnosis , Pneumonia/epidemiology , Pandemics , Streptococcus pneumoniae
16.
Saudi Med J ; 43(9): 1000-1006, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2111186

ABSTRACT

OBJECTIVES: To investigate the seroprevalence of the community-acquired bacterial that causes atypical pneumonia among confirmed severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) patients. METHODS: In this cohort study, we retrospectively investigated the seroprevalence of Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila among randomly selected 189 confirmed COVID-19 patients at their time of hospital presentation via commercial immunoglobulin M (IgM) antibodies against these bacteria. We also carried out quantitative measurements of procalcitonin in patients' serum. RESULTS: The seropositivity for L. pneumophila was 12.6%, with significant distribution among patientsolder than 50 years (χ2 test, p=0.009), while those of M. pneumoniae was 6.3% and C. pneumoniae was 2.1%, indicating an overall co-infection rate of 21% among COVID-19 patients. No significant difference (χ2 test, p=0.628) in the distribution of bacterial co-infections existed between male and female patients. Procalcitonin positivity was confirmed amongst 5% of co-infected patients. CONCLUSION: Our study documented the seroprevalence of community-acquired bacteria co-infection among COVID-19 patients. In this study, procalcitonin was an inconclusive biomarker for non-severe bacterial co-infections among COVID-19 patients. Consideration and proper detection of community-acquired bacterial co-infection may minimize misdiagnosis during the current pandemic and positively reflect disease management and prognosis.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Pneumonia, Bacterial , Adult , COVID-19/epidemiology , Cohort Studies , Coinfection/epidemiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Female , Humans , Immunoglobulin M , Male , Mycoplasma pneumoniae , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/microbiology , Procalcitonin , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology , Seroepidemiologic Studies
17.
Eur Respir Rev ; 31(166)2022 Dec 31.
Article in English | MEDLINE | ID: covidwho-2079388

ABSTRACT

Lower respiratory infections include acute bronchitis, influenza, community-acquired pneumonia, acute exacerbation of COPD and acute exacerbation of bronchiectasis. They are a major cause of death worldwide and often affect the most vulnerable: children, elderly and the impoverished. In this paper, we review the clinical presentation, diagnosis, severity assessment and treatment of adult outpatients with lower respiratory infections. The paper is divided into sections on specific lower respiratory infections, but we also dedicate a section to COVID-19 given the importance of the ongoing pandemic. Lower respiratory infections are heterogeneous entities, carry different risks for adverse events, and require different management strategies. For instance, while patients with acute bronchitis are rarely admitted to hospital and generally do not require antimicrobials, approximately 40% of patients seen for community-acquired pneumonia require admission. Clinicians caring for patients with lower respiratory infections face several challenges, including an increasing population of patients with immunosuppression, potential need for diagnostic tests that may not be readily available, antibiotic resistance and social aspects that place these patients at higher risk. Management principles for patients with lower respiratory infections include knowledge of local surveillance data, strategic use of diagnostic tests according to surveillance data, and judicious use of antimicrobials.


Subject(s)
Anti-Infective Agents , Bronchitis , COVID-19 , Community-Acquired Infections , Pneumonia , Respiratory Tract Infections , Adult , Child , Humans , Aged , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/drug therapy , Community-Acquired Infections/epidemiology , Bronchitis/diagnosis , Bronchitis/drug therapy , Pneumonia/diagnosis , Acute Disease , Anti-Infective Agents/therapeutic use , Hospitals , Anti-Bacterial Agents/adverse effects
18.
Expert Rev Anti Infect Ther ; 20(12): 1537-1550, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062697

ABSTRACT

INTRODUCTION: Although viruses are an underestimated cause of community-acquired pneumonias (CAP) and hospital-acquired pneumonias (HAP)/ventilator-associated pneumonias (VAP) in intensive care unit (ICU) patients, they have an impact on morbidity and mortality. AREAS COVERED: In this perspective article, we discuss the available data regarding the management of severe influenza CAP and herpesviridae HAP/VAP. We review diagnostic and therapeutic strategies in order to give clear messages and address unsolved questions. EXPERT OPINION: Influenza CAP affects yearly thousands of people; however, robust data regarding antiviral treatment in the most critical forms are scarce. While efficacy of oseltamivir has been investigated in randomized controlled trials (RCT) in uncomplicated influenza, only observational data are available in ICU patients. Herpesviridae are an underestimated cause of HAP/VAP in ICU patients. Whilst incidence of herpesviridae identification in samples from lower respiratory tract of ICU patients is relatively high (from 20% to 50%), efforts should be made to differentiate local reactivation from true lung infection. Only few randomized controlled trials evaluated the efficacy of antiviral treatment in herpesviridae reactivation/infection in ICU patients and all were exploratory or negative. Further studies are needed to evaluate the impact of such treatment in specific populations.


Subject(s)
COVID-19 , Community-Acquired Infections , Healthcare-Associated Pneumonia , Influenza, Human , Pneumonia, Ventilator-Associated , Virus Diseases , Humans , Intensive Care Units , Community-Acquired Infections/drug therapy , Community-Acquired Infections/epidemiology , Antiviral Agents/therapeutic use
19.
BMC Infect Dis ; 22(1): 763, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2053867

ABSTRACT

BACKGROUND: The COVID-19 pandemic was met with strict containment measures. We hypothesized that societal infection control measures would impact the number of hospital admissions for respiratory tract infections, as well as, the spectrum of pathogens detected in patients with suspected community acquired pneumonia (CAP). METHODS: This study is based on aggregated surveillance data from electronic health records of patients admitted to the hospitals in Bergen Hospital Trust from January 2017 through June 2021, as well as, two prospective studies of patients with suspected CAP conducted prior to and during the COVID-19 pandemic (pre-COVID cohort versus COVID cohort, respectively). In the prospective cohorts, microbiological detections were ascertained by comprehensive PCR-testing in lower respiratory tract specimens. Mann-Whitney's U test was used to analyse continuous variables. Fisher's exact test was used for analysing categorical data. The number of admissions before and during the outbreak of SARS-CoV-2 was compared using two-sample t-tests on logarithmic transformed values. RESULTS: Admissions for respiratory tract infections declined after the outbreak of SARS-CoV-2 (p < 0.001). The pre-COVID and the COVID cohorts comprised 96 and 80 patients, respectively. The proportion of viruses detected in the COVID cohort was significantly lower compared with the pre-COVID cohort [21% vs 36%, difference of 14%, 95% CI 4% to 26%; p = 0.012], and the proportion of bacterial- and viral co-detections was less than half in the COVID cohort compared with the pre-COVID cohort (19% vs 45%, difference of 26%, 95% CI 13% to 41%; p < 0.001). The proportion of bacteria detected was similar (p = 0.162), however, a difference in the bacterial spectrum was observed in the two cohorts. Haemophilus influenzae was the most frequent bacterial detection in both cohorts, followed by Streptococcus pneumoniae in the pre-COVID and Staphylococcus aureus in the COVID cohort. CONCLUSION: During the first year of the COVID-19 pandemic, the number of admissions with pneumonia and the microbiological detections in patients with suspected CAP, differed from the preceding year. This suggests that infection control measures related to COVID-19 restrictions have an overall and specific impact on respiratory tract infections, beyond reducing the spread of SARS-CoV-2.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Respiratory Tract Infections , COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Humans , Pandemics , Pneumonia/epidemiology , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
20.
Urol J ; 19(5): 386-391, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2026216

ABSTRACT

PURPOSE: To evaluate whether there were any changes in the rates of urinary tract infection (UTI) and antibiotic resistance in pediatric patients during the pandemic period. MATERIALS AND METHODS: Urine culture samples collected due to suspected UTI were searched retrospectively from our hospital database, and the patients with growth in urine culture were identified. They were divided into 2 groups as Group A (before COVID-19, March 11, 2019- March 11, 2020) and Group B (COVID-19 period, March 11, 2020- March 11, 2021). Also, COVID-19 period was divided into 3 subgroups (March 2020- June 2020: first epidemic peak, July 2020 - November 2020: normalization process, December 2020- March 2021: second epidemic peak). We adjusted the patient age as <1, 1-6 and 7-18 years. Age, gender, microorganism strain types, and their antibiotic resistance patterns were compared between the 2 groups Results: This cross-sectional study included 250 eligible patients (Group A, n=182 and Group B, n=68) with a mean age of 10.91 ± 5.58 years. The male/female ratio was higher in Group B than in Group A (p = .004). Incidence of UTIs was lower in the curfew and restriction periods due to epidemic peaks than normalization process (p = .001). The proportion of E.coli decreased from 80.2% to 61.8% during the pandemic period when compared to pre-pandemic period (p = .001). Group B had lower rates of resistance to ampicillin, fosfomycin and nitrofurantoin for E.coli than Group A (p = .001, p = .012 and p = .001, respectively). Also, Group B had higher rate of uncommon microorganisms and lower rate of resistance to nitrofurantoin for E.coli than Group A in patients aged 7-18 years (p = .003 and p = .023, respectively). CONCLUSION: Our study demonstrates that the ongoing COVID-19 pandemic process has caused alterations in community-acquired UTIs in children. More hygienic lifestyle may be considered as the main factor in this change.


Subject(s)
COVID-19 , Community-Acquired Infections , Escherichia coli Infections , Urinary Tract Infections , Humans , Female , Male , Child , Child, Preschool , Adolescent , COVID-19/epidemiology , Pandemics , Nitrofurantoin , Escherichia coli Infections/epidemiology , Cross-Sectional Studies , Retrospective Studies , Microbial Sensitivity Tests , Anti-Bacterial Agents/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/epidemiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/drug therapy , Escherichia coli
SELECTION OF CITATIONS
SEARCH DETAIL